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Abstract. The molecular improved generator coordinate
Hartree–Fock (MIGCHF) method is used to generate
increasing size atom-centered Gaussian basis sets for the
CO2 molecule. From these basis sets total HF energies
and second-order correlation energies were calculated and
compared with results obtained with other approaches.
Considering our largest basis set, the HF energy is in error
by 98µhartree and the second-order correlation energy
corresponds to∼95.6% of an estimate of the limiting value.
The relevance of the present calculations is to show the
accuracy that can be achieved in studies of small poly-
atomic molecules with the MIGCHF method.

Keywords: Molecular improved generator coordinate
Hartree–Fock method – Gaussian basis sets – CO2
molecule – HF and second-order correlation energies

1 Introduction

Contemporary ab initio methods for calculating accurate
energetics and molecular properties have two major lim-
iting factors: incomplete incorporation of electron cor-
relation and incomplete description of the orbitals due
to the use of finite basis sets [1]. Recovering substantial
fractions of the correlation energy requires sophisti-
cated wave functions and large basis sets, and obtaining
microhartree accuracy for absolute energies is prohibi-
tively expensive for all but the smallest systems. There
are procedures for approaching the complete basis set
limit by systematically enlarging a basis set, for exam-
ple: the even-tempered formula [2], the correlation-consis-
tent polarized valence (cc-pVXZ, X = D, T, Q, 5) and the
augmented cc-pVXZ (aug-cc-pVXZ) basis sets [3,4], the
molecular generator coordinate Hartree–Fock (MGCHF)
method [5], and the molecular improved GCHF (MI-
GCHF) method [6]. In 1979, Schmidt and Ruedenberg
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[7] proposed a practical scheme for systematically extend-
ing basis sets of even-tempered [2] Gaussian functions so
as to approach the complete basis set limit. This scheme
can be readily adapted for the development of universal
even-tempered basis sets and has been used extensively in
developing basis sets capable of supporting high precision.
Universal basis sets for high-precision molecular appli-
cations are necessarily large and, therefore, lead to com-
putationally demanding practical applications. Previous
papers [8–10] using universal basis sets of even-tempered
Gaussian functions centered not only on the atomic nuclei
but also on the bond centers have shown that accuracy of
a few microhartree can be achieved for various diatomic
systems.

The purpose of this paper is to explore the use of atom-
centered Gaussian basis sets (GBSs) in reducing the total
basis set truncation error in matrix HF and second-order
Møller–Plesset (MP2) calculations for the ground state of
the carbon dioxide molecule at its equilibrium geometry.

Previous papers [6,11–13] in this series have examined
the accuracy of the MIGCHF method [6] for diatomic
molecules at the HF level, and have demonstrated that
accuracy in the total energy of 1µhartree or less for H2,
HLi, and Li2 molecules [6], and smaller than 77µhar-
tree for fourteen electron diatomic systems [11] can be
achieved. In Ref. [13], the calculation of the second-order
correlation energy for diatomic molecules was considered,
and it was shown that 95.7, 88.4, and 96.8% of estimates of
the exact second-order energies for the ground state of the
N2, BF, and CO molecules could be supported by suitably
constructed atom-centered basis sets. This work, therefore,
extends our previous studies to polyatomic molecules by
examining, as a prototype linear triatomic system, the CO2
molecule at both the HF and MP2 levels.

2 Method

In the MGCHF method [5] the molecular orbitals (MO)
are integral transforms, i.e.,

ψi(γ )=
N

�
n

P

�
p

∫
finp(αnp)φp(αnp; �rγ − �Rn)dαnp, (1)
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where the index n runs for N atomic nuclei and p for the
various s, p, d, . . . symmetries of the atomic functions φp;
�rγ is the coordinate of the electron γ and �Rn of the nucleus
n. The indexes forαnp admit the possibility of different gen-
erator coordinates for different atomic species and sym-
metries. For the case of equal atoms or universal basis set
one could write αp only.

The variation of the total energy expectation value with
respect to the weight function finp leads to the molecular
Griffin–Hill–Wheeler HF (GHWHF) Eq. [5]
N

�
n

P

�
p

∫
Fnp,n′p′(αnp, αn‘p′)− εiSnp,n′p′(αnp, αn‘p′)

×finp(αnp)dαnp =0, i =1 , . . . , I , (2)

where the εi are the orbital energies and the explicit forms
of Fnp,n′p′ and Snp,n‘p′ are given in Ref. [5].

The Eqs. (2) are solved through integral discretization
(ID) technique [14], in which Eq. (1) becomes

ψi(γ, T )=�
n

�
p

�
t
finp(αnpt )φp(αnpt ; �rγ − �Rn)�αnpt (3)

and one can interpret

Cinpt =�αnptfinp(αnpt ), (4)

as the atomic linear combination coefficient in a MO. In
order to make numerical integration through discretiza-
tion efficient, a relabelling of the generator coordinate
space was introduced [14] according to

�= ln(α/A), A>1, (5)

where A is a scaling parameter determined numerically.
Thus, the coefficient that appears in Eq. (4) becomes

Cinpt =A��nptfinp(�npt ) exp(A�npt ).

The new generator coordinate space, �, is discretized
for each s, p, d, . . . symmetry of each atom in an equally
spaced mesh

{
�k
np

}
so that:

�k
np =�min

np + (k−1)��np, k=1, . . . ,Nnp. (6)

In Eq. (6) Nnp is the number of discretization points for
atom n and symmetry p, �min

np and ��np are respectively
the lowest value and the constant increment for the gen-
erator coordinate. The values of �min

np and Nnp are chosen
to embrace an adequate integration range for the weight
function finp. From Eq. (6) we can see that the original
MGCHF method [5] uses only one arithmetic sequence of
equally spaced points

{
�k
np

}
to generate basis sets.

One may wonder whether the results obtained with the
Eqs. (5) and (6) can be improved within the framework
of the MGCHF method without adding more functions
(Gaussian-type functions (GTFs) in our case). We did
this by proposing a simple modification that may produce
improvements in the HF wave functions. The idea is to use
(when necessary) three arithmetic sequences with the same
principal quantum number. This allows to form different
distributions for small, intermediate, and large exponents
of GTFs.

In this new approach the generator coordinate space,
�, is discretized for each s, p, d, f,. . . symmetry in three
independent arithmetic sequences [6]:

�k
np =




�min
np + (k−1)��np, k=1, . . . ,Knp

�
′ min
np + (k−1)��

′
np, k=Knp +1, . . . ,Mnp

�
′′ min
np + (k−1)��

′′
np, k=Mnp +1, . . . ,Nnp.

(7)

For a given value of Nnp, the number of parameters to be
optimized for each symmetry of each atom is three times
that of the original MGCHF method, see Eq. (6)].

Here, we call attention to the fact that when one uses
Eq. (7), one does not have equally spaced points

{
�k
np

}
anymore as occur in Eq. (6), because now three indepen-
dent arithmetic sequences are used to generate the basis
functions exponents for each symmetry of each atom.
This methodology to generate primitive GTF exponents
in a molecular environment was called the MIGCHF
method [6].

At each iteration of the self-consistent field proce-
dure the integrations are implemented numerically. This
approach leads formally to the HF Roothaan (HFR) equa-
tions, with the advantage of allowing the use of avail-
able HFR codes. Nonetheless, the discretization points
(exponents) are chosen to preserve the integral character
of the molecular GHWHF, see Eqs. (2).

3 Atom-centered basis sets of primitive Gaussian-type
functions

As a starting point to construct accurate basis sets for
CO2, the GBSs generated by Librelon and Jorge [15] with
the IGCHF method [16] were used for C (23s14p) and O
(23s14p). To improve the molecular HF energy, one func-
tion of s symmetry and two of p symmetry were added
to the C and O atoms and, then, all s and p exponents
were reoptimized through the Eq. (7). Next, 8d (for C)
and 6d (for O) polarization functions were included in
the basis set and then optimized in the molecular environ-
ment using only one arithmetic sequence of Eq. (7), since
the number of exponents of the d symmetry is small. The
last step was repeated for higher angular momentum func-
tions, and sequences of optimized larger atom-centered
basis sets were constructed (see Table 1). It is important to
say that only the additional basis functions with respect to
the previous entry were optimized, and that only the spher-
ical components of the polarization functions were used.
For all calculations, the scaling parameter that appears in
Eq. (5) has the same value (6.0).

4 Results and discussion

The MIGCHF method presented above has been used to
generate accurate GBSs for the CO2 molecule. The mol-
ecule is linear in its ground electronic state, belonging
to the D∞h point symmetry group, and the experimen-
tal C=O bond lengths are 1.160 Å[17]. The majority of
the calculations reported in this work were carried out
with the GAUSSIAN 94 program [18], and the correla-
tion calculations include all electrons. It is known that the
computational linear dependence can be measured by the
smallest eigenvalue of the overlap matrix. All the basis sets
generated in this work have overlap matrix with smallest
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Table 1. Ground-state total HF energies (EHF) and second-order correlation energies (E2) for the CO2 molecule. All energies are in hartree

Basis set Number of GTFs −EHF −E2 Reference

C(24s16p); O(24s16p) 216 187.600283 0.527368 This work
C(24s16p8d); O(24s16p6d) 316 187.719139 0.742880 This work
aug-cc-pV5Z 381 187.725019 0.775220 Calculated in this work
C(24s16p8d3f); O(24s16p6d3f) 379 187.725038 0.800976 This work
C(28s14p14d14f); O(28s14p14d14f) 476 187.725091 – [19]
C(30s15p15d15f); O(30s15p15d15f) 510 187.725114 – [19]
C(24s16p8d3f2g); O(24s16p6d3f2g) 433 187.725283 0.819551 This work
C(24s16p8d3f2g1h); O(24s16p6d3f2g1h) 466 187.725310 0.823861 This work
C(28s14p14d14f); O(28s14p14d14f); CO(24s10p11d) 694 187.725408 – [19]
MP2-R12/A cc-pV6Z(uc) 483 – 0.861806 Calculated in this work

eigenvalues ∼10−7 . Thus, there are no signs of significant
problem associated with computational linear dependence
for any of these basis sets.

Table 1 displays the ground-state total HF energies
(EHF) for CO2 computed with the GBSs generated with
the MIGCHF method [6], with the aug-cc-pV5Z basis
sets [4], and with the even-tempered GBSs centered on
the atoms [19]. The second-order correlation energies (E2)
are also calculated and compared with the result obtained
with the aug-cc-pV5Z basis sets [4]. An estimate of the HF
limit (−187.725408 hartree) established by Moncrieff and
Wilson [19] is also included in Table 1. Besides this, the
PSI3 code [20] is used for the second-order Møller–Ples-
set perturbation theory calculations with linear terms r12
(MP2-R12/A) [21,22]. For the MP2-R12/A calculations,
the cc-pV6Z basis set of Wilson et al. [23] in a fully uncon-
tracted form, denoted in the present work as cc-pV6Z(uc),
is used to estimate a ‘limiting’ value of the second-order
correlation energy of −0.861806 hartree (see the last row
of Table 1).

From Table 1, one can see that the total HF ener-
gies calculated with the MIGCHF method [6] decrease
monotonically with increasing size of basis set, that is,
the energy is found to decrease monotonically on adding
the higher harmonic basis functions with the largest
decrease of ∼119 mhartree resulting from the addition
of the atom-centered d functions. One obtains more sta-
ble HF energy with our C(24s16p8d3f); O(24s16p6d3f)
basis set (379 primitive GTFs) than with the larger aug-
cc-pV5Z basis sets (420 primitive GTFs contracted to
381 functions). Here, it is important to say that the
CPU times spent to realize the HF calculations using
our basis set and the widely used correlation consistent
basis sets of Kendall et al. [4] are ∼28 and 165 min,
respectively. The main difference between these two
approaches is that the aug-cc-pV5Z basis sets are atom
specific, whereas the exponents of our basis set are opti-
mized in the molecular environment with the MIGCHF
method. The C(28s14p14d14f); O(28s14p14d14f) and
C(30s15p15d15f); O(30s15p15d15f) basis sets [19] and
the smaller C(24s16p8d3f2g); O(24s16p6d3f2g) and C(24s
16p8d3f2g1h); O(24s16p6d3f2g1h) basis sets generated
with the MIGCHF method [6] have associated errors of
317, 294, 125, and 98µhartree, respectively. From the

results presented above, it is clear that employing only
atom-centered basis sets of GTFs the MIGCHF method
gives the best HF energies.

We recall that the lowest matrix HF energy
(−187.725408 hartree) so far reported in the literature
was obtained with a basis set containing functions cen-
tered on both the atomic and bond centers, namely:
C(28s14p14d14f); O(28s14p14d14f); CO(24s10p11d) (694
GTFs) [19]. The idea of using bond functions in molecular
structure calculations is an old one [24]. Indeed, a num-
ber of authors have advocated the use of basis functions
located at the bond center in both SCF calculations and
in calculations taking account of correlation effects [25,
26]. Such functions were introduced to provide the same
effects as the addition of a set of polarization functions,
but at a lower cost.

The first two E2 results presented in Table 1 show
clearly that the addition of d-type polarization functions
yields the largest energy decrease in the correlation energy.
The next two studies summarized in this table indicate
that the second-order correlation energy evaluated with
the MIGCHF method [6] is ∼26 mhartree lower than
the result obtained with the larger aug-cc-pV5Z basis
set [4]. We recall that all the GTF exponents of our
C(24s16p8d3f); O(24s16p6d3f) basis set were optimized
at the HF level, and that the aug-cc-pV5Z basis set
(which contains up to h functions) is designed for valence
correlation calculations. Even so, it is notable that the
basis set generated with the MIGCHF method reproduces
all electron correlation energy better than aug-cc-pV5Z.
Helgaker et al. [27] investigating the basis set convergence
of the correlation energy in the water molecule verified
that the correlation-consistent polarized core-valence (cc-
pCVXZ) basis sets [28] give all electron correlation ener-
gies closer to the MP2-R12 results than the corresponding
values calculated with the cc-pVXZ basis sets. One knows
that for calculations of electron correlation effects it is nec-
essary to include functions of higher angular symmetry in
the basis set. The best E2 value (−0.823861 hartree) pre-
sented in Table 1 is obtained with our C(24s16p8d3f2g1h);
O(24s16p6d3f2g1h) atom-centered basis set, which corre-
sponds to ∼95.6% of the limiting value. The results of the
second-order correlation energies confirm the good accu-
racy that can be achieved with the MIGCHF method [6]



72

Table 2. Comparison of the occupied molecular orbital (MO) ener-
gies (in hartree) calculated with Gaussian basis sets (GBSs)

Orbital −ε (GBS)a −ε (GBS)b

1σ 2
g 20.64939 20.64939

1σ 2
u 20.64934 20.64935

2σ 2
g 11.45889 11.45889

3σ 2
g 1.53106 1.53104

4σ 2
g 1.47790 1.47788

2σ 2
u 0.80078 0.80081

3σ 2
u 0.74385 0.74388

1π4
u 0.71610 0.71610

1π4
g 0.54504 0.54502

aMO energies obtained with our largest GBS
C(24s16p8d3f2g1h);O(24s16p6d3f2g1h)
bMO energies obtained with the largest GBS of the Ref. [19]
C(28s14p14d14f);O(28s14p14d14f);CO(24s10p11d)

in the generation of total wave functions for polyatomic
molecules.

A comparison of the occupied MO energies calculated
with the largest basis sets reported in this work and in
Ref. [19] is made in Table 2. From this table, it is clear that
the largest difference between corresponding MO energies
computed with these two basis sets is only three units in
the last figure.

An extensive discussion about the main differences
between the MIGCHF method [6] and the algebraic
approximation used by Moncrieff and Wilson [19] is
included in Ref. [11].

5 Conclusions

Using the MIGCHF method [6], which has previously
been shown to be capable of providing accurate total wave
functions for the ground states of some diatomic systems
[6,11–13], we have carried out HF and MP2 calculations
for the ground state of the carbon dioxide molecule, which
we consider as a prototype for polyatomic systems.

Considering only atom-centered basis sets of GTFs,
the accuracies achieved in this work at the HF level
are better than the corresponding ones obtained with
the basis sets generated by Kendall et al. [4] and by
Moncrieff and Wilson [19]. The energy computed with
our C(24s16p8d3f2g1h); O(24s16p6d3f2g1h) basis set
(466 GTFs) is 98µhartree above an estimate of the
HF limit [19] obtained with the larger C(28s14p14d14f);
O(28s14p14d14f); CO(24s10p11d) basis set (694 GTFs).

The second-order correlation energy evaluated in the
present paper with the C(24s16p8d3f); O(24s16p6d3f)
basis set is better than the result obtained with the widely
used larger aug-cc-pV5Z basis sets [4]. The second-order
correlation energy evaluated with our largest basis set

(−0.823861 hartree) accounts for ∼95.6% of the limiting
value.

Thus, considering only atom-centered basis sets of
GTFs, we believe that the degree of accuracy achieved in
this work with the MIGCHF method at the HF and MP2
levels is among the best so far presented in the literature,
and that this method is appropriate to realize calculations
of electronic structures of small polyatomic molecules.
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